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Development of a Versatile Physics-Based
Finite-Element Model of an AlGaN/GaN HEMT
Capable of Accommodating Process and Epitaxy

Variations and Calibrated Using
Multiple DC Parameters

Eric R. Heller, Rama Vetury, and Daniel S. Green, Member, IEEE

Abstract—We present a physics-based finite-element model of
operation of an AlGaN/GaN HEMT with device geometry in-
puts taken from transmission electron microscope cross sections
and calibrated by comparison with measured electrical data
comprising standard field-effect transistor metrics and less well-
known model parameters. A variety of electrical outputs from the
model are compared to experiment, and the level of agreement is
reported.

Index Terms—Device model, field-effect transistor (FET), GaN,
GaN/AlGaN, high-electron mobility transistor (HEMT), model
calibration, model characterization, modulation-doped field effect
transistor (MODFET).

I. INTRODUCTION

B ECAUSE of the high breakdown field, high band gap,
and reasonably high mobility of GaN and the AlGaN/

GaN channel, AlGaN/GaN high-electron mobility transistors
(HEMTs) are rapidly being commercialized for high-power dc
and microwave radio-frequency devices. In fact, because of
the innate promise of the materials system and the progress
already made toward realizing its potential, devices are being
commercially produced, despite the presence of some perfor-
mance issues and long-term reliability concerns with this ma-
terials system that require more detailed study. Physics-based
electrothermal models of these devices have been constructed
in the past [1]–[4], and most include some comparison to exper-
imental data for model calibration and/or verification. However,
a complete and convincing device model should be able to
simultaneously match experimental data for numerous metrics
and should realistically simulate the thermal characteristics of
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the full device using a 3-D simulation domain that includes the
whole thermal path.
In order to incorporate all of the physics relevant to this prob-

lem, we have constructed a finite-element model of the small-
scale physics in the ISE Sentaurus Device [5] of the HEMT and
linked this to a large-scale 3-D finite-element thermal model
in ANSYS [6], which contains the larger scale features. This
allows the full 3-D geometry of the substrate and package to be
included in the model.

II. MODEL AND EXPERIMENTAL DETAILS

We modeled the device using real device cross sections, with
the overall shape of the gate extracted from TEM cross sections
of representative devices and other dimensions extracted from
design rules. This is not to say that we are stating that this
was required for a functioning model; we just mean that we
used the most accurate data available. The layer stack consisted
of an AlGaN barrier structure on 2.05-μm GaN. This is on a
100-nm interfacial layer on a thinned 100-μm SiC die. The part
is a six-finger 370-μm-gate-width AlGaN/GaN HEMT on a die
measuring 800 μm by 800 μm mounted on 12.7-μm (1/2 mil)
thermal die attach (50.6 W/m/K) in a CuW package, which is
held at a fixed temperature after 1.54-mm (60 mils) thickness.
Inputs to the electrothermal (small scale) portion of the

device model include temperature-dependent thermal conduc-
tivities [1], [2], [7] and heat capacities; temperature- and
mole-fraction-dependent semiconductor band gaps, and ohmic
contact resistances; dielectric constants; electron effective
masses (for gate tunneling leakage and density of states);
hot electron relaxation time (Hydrodynamic model) [8]; and
field- and temperature-dependent electron mobility fitted to
Albrecht et al. [9], except that the low field mobility has been
set to 1630 cm2/V/s based on Hall measurements on Van der
Pauw test patterns. Additional details on the implementation of
these inputs can be found in our earlier publications [1], [2] and
the user guide for the ISE Sentaurus Device [5].
Gate reverse current modeling includes the effects of

Shockley–Read–Hall recombination and Fowler–Nordheim
tunneling. Spontaneous and piezoelectric polarizations are
modeled as a quadratic function of Al mole fraction [10], with

0018-9383/$26.00 © 2011 IEEE
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a slight linear temperature variation or pyroelectric coefficient
[10]. Acceptor-type traps at a uniform volume density have
been placed in the GaN buffer.
The small-scale simulation includes the coupled solution of

the hydrodynamic equations for electronic transport (a general-
ization of the drift-diffusion model) and the thermal diffusivity
equation. In this model, heat is generated as electrons thermal-
ize mostly where the device electric field is typically highest,
i.e., in the channel region near the drain edge of the gate. It
was found that this made a clear difference for simulations
with deep traps versus drift-diffusion; hot electrons diffuse out
of the channel and thermalize into the deep traps in the GaN
epilayer, especially for the highest drain biases we tested here
(65 V), where this can be through the entire layer under the
channel between the gate and drain. More sophisticated models
exist such as Monte Carlo [11], where electrons are treated as
discrete particles, instead of an electronic fluid, and even hot
phonon models [12], where electron energy loss is modulated
by the density, energy spectrum, and type of phonons in the
crystal. However, this requires much greater computational
complexity and thus limits the physical complexity reasonably
attainable. Part of our goal was to build a versatile model based
on realistic device dimensions at all relevant length scales.
The large-scale model solves only the thermal diffusivity

equation with temperature-dependent thermal conductivities for
the relevant materials, but because this requires a 3-D solu-
tion of a multifinger part, there is considerable computational
and complexity savings not attempting the full electrothermal
solution.
This electrothermal model was solved in 2-D for portions of

the device including the source, gate, and drain metallizations;
SiN passivation and a source-connected field plate, the epilay-
ers; and about 10 μm of the SiC substrate, in order to include all
electrically active regions. Thermal boundary conditions at the
top and sides are adiabatic, but the bottom is linked to a thermal
simulation as previously described. Specifically, the simulation
domain for the electrothermal model is a plane perpendicular
to the gate finger, which is 20 μm wide at the epilayers, with
the gate at the center and including some of the source and
drain ohmics. This domain includes a portion of the SiC in
the unusual shape of the bottom half of a 12-sided regular
polygon with the SiC/epilayer interface directly under the gate
at the center. The reason for this unusual domain is driven
by the physics of the problem; some heat is being generated
in the channel, but most is at the drain edge of the gate. At
about 10 μm away from this region (which is a distance that is
considerably greater than the size of the main heat source), it
is observed in the model that the heat is radiating away such
that the isothermal contours are nearly circular and centered
about the drain edge of the gate. With at most 3 ◦C variation,
the temperature of this unusual SiC bottom domain (chosen to
approximate a half-circle but with fewer mesh elements) was
observed to be constant for this reason. This allows a very
simple connection to the geometrically complex 3-D thermal
model to be described. Specifically, the 3-D thermal model
was run for different power levels and base-plate temperatures
(Tbp), and the average temperature at this same half-circle
region at the center of a central finger of the multifinger device

Fig. 1. (Thick solid lines) Model results compared with (thin dotted lines)
experimental results for a selected device from wafer “A” with better-than-
average pinch-off characteristics. Data are for drain bias of 65, 48, 28, and
10 V going from left (dark lines) to right (light lines).

Fig. 2. (a) Impact of varying the piezoelectric and polarization charge at the
channel on device performance. (b) Impact of varying the trap density in the
GaN buffer. For both, data are for drain bias of 65, 48, 28, and 10 V going from
left (dark lines) to right (light lines).

Fig. 3. (Solid curves) Transconductance curve for the wafer “A” population
of devices with (thick dashed line) overlaid modeling results.

modeled (Tlink) was recorded. The center was chosen, because
most of the device is expected to be near the peak temperature
[2]. The fit of the temperature at this half-circle region to
a thermal resistance as a function of only Tavg = Tbp/2+
Tlink/2 was good to better than 1.5 ◦C error. At this point,
this function was used in the ISE Sentaurus Device small-scale
electrothermal model as input for the thermal resistance of the
bottom domain. The average temperature along this region of
one domain agreed with the average temperature along the same

2
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TABLE I
EXPERIMENT VERSUS MODEL DATA FOR SEVERAL PARAMETERS

region of the other by better than 1 ◦C. Because the models are
linked in this way, they do not need to share mesh elements as
is commonly needed in multiscale modeling.

III. MODEL CALIBRATION

The model was calibrated using two wafers that were run
through a nearly identical process with one process variation
between them. This variation was expected to introduce some
difference in the 2-DEG charge density under the gate, due to
the relationship between the surface potential and the 2-DEG
charge density, but otherwise was not expected to impact the
epitaxy stack, structure, and cross section of the final device
geometry. These two wafers are denoted as “A” and “B” in this
paper. As a measure of the predictive ability of this model and
its versatility with respect to its applicability to different epitax-
ial starting materials, the simulated electrical characteristics of
a third wafer, which was denoted as wafer “C,” are also shown.
The degree of agreement between the simulated and measured
electrical characteristics of wafer “C” is reported. Wafer “C”
is processed in identical fashion to wafer B; however, it is
different in its epitaxial stack, which is described in Section IV
of this paper.
Most input parameters are either fairly well known or have

only a modest effect on the electrical properties within their
expected range of uncertainty. However, a small percentage
change in the polarization charge at the AlGaN/GaN interface
is observed to have a large effect on the threshold voltage and
saturation current of the modeled device. In addition, changes in
the density of active traps in the GaN buffer affect the threshold
voltage and saturation current as before but also affect the
subthreshold slope of the device. This is of some importance
from a model perspective, because an accurate density of active
traps is hard to quantitatively determine by experiment. In both
of these cases, the input parameters were adjusted to allow
more exact fitting of the experimental data. For the polarization
charge term, the interface charge density extracted from [10] is
multiplied by a “charge multiplier” (CM) close to 1.0 to fit data,
and for the trap density, this value is adjusted, always assuming

that the trap density is spatially uniform and with unchanged
energy level and capture cross section.
Fig. 1 shows subthreshold data collected for a good device

on wafer “A” at several voltages, with modeling data overlaid.
Both parameters were specifically adjusted to match the se-
lected “better performing” device as well as possible, meaning
one that pinched off with high subthreshold slope. It is clear
that there are some leakage paths that are not included in the
model. A better fit could have been obtained by varying the
trap density with depth (traps deep in the buffer and far from
the channel were seen to mainly affect only the higher drain
voltage data), but this was not done so as to minimize adjustable
parameters. Fig. 2(a) and (b) shows the effect of increasing
the CM and increasing deep levels, respectively. It is seen
that modest changes in either of these causes big changes in
the electrical properties of the model and that they affect the
electrical properties in very different way, so that their effects
are separable. Fig. 3 shows the transconductance curve for the
same wafer “A” devices with overlaid modeling results for the
same model as Fig. 1, and Table I shows the level of parametric
data agreement seen, which were generated after the model
calibration was complete. Model data agree within two standard
deviations for all data but those related to gm,Peak for wafer
“A”. As can be seen in Fig. 3, this is due to the unusual peak
in gm for the experimental data for this wafer. We are unaware
of the precise cause of this anomaly, which was not present on
some other wafers.

IV. EXTENDED MODEL CALIBRATION

Fig. 4 shows data from wafer “B” run with the same device
geometry but under a different process; it is experimentally seen
that the data appear to form a different data set and to require
a new model. The solid line represents data from the model
after changing only the CM and illustrates the importance
of controlling process parameters that affect the surface of
GaN devices. It has been observed before that the electrical
properties of GaN devices are sensitive to the process, bias
history, and past light exposure, with persistent effects seen that

3
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Fig. 4. (Solid curves) Transconductance curve for the wafer “B” population
of devices with (thick dashed line) overlaid modeling results.

Fig. 5. (Solid curves) Transconductance curve for the wafer “C” population of
devices with thinner barrier and lower mole fraction AlGaN with (thick dashed
line) overlaid modeling results.

are most commonly attributed to energetically deep traps that
affect the density of charge in the channel [13], [14]. As could
be expected, because the transconductance data of Fig. 4 are
less noisy than those of Fig. 3, the parametric data in Table I
agree better with the model.
At this point, the proposed model can be used for predictive

purposes. The AlGaN barrier in the model, as matched to
wafer “B,” was changed to correspond to an experimental wafer
“C” with reduced AlGaN barrier thickness and mole fraction.
Nothing else was changed, including the CM in this instance.
Fig. 5 shows the agreement between model and experiment, and
Table I shows the parametric agreement.

V. CONCLUSION

A physics-based finite-element model containing the entire
electrical region of interest for dc operation and the entire
thermal region including the package has been generated. The
model has been calibrated to several dc metrics, and the level of
agreement has been shown. It has been shown that this model
can be easily adjusted to fit additional populations of devices,
keeping the fundamental physics in the model the same. It has
also been shown that the electrical properties of the model are
sensitive to trap density within the GaN buffer layer, helping
constrain this parameter.
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